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Understanding the economic consequences of digitalisation is essential for 
designing policies that foster inclusive and sustainable development, particularly 
within emerging and transition economies. This research explores the influence of 
digitalisation on sustainable economic progress in Azerbaijan and Hungary, 
utilising annual data spanning from 2000 to 2023. Employing a hybrid 
methodological approach, the study integrates conventional econometric analysis 
(VECM) with supervised machine learning techniques (ARIMA and 
XGBRegressor) to provide a comparative assessment of the economic impacts 
resulting from digital transformation. The empirical results indicate that, in the 
short term, variables associated with information and communication technology 
(ICT) do not exert a statistically significant effect on economic growth. This 
finding suggests that the economic benefits of digitalisation may take time to 
materialise. Conversely, in the long term, digitalisation demonstrates a notable 
influence on GDP per capita in both nations. Specifically, in Azerbaijan, a 1 percent 
rise in Computer, communications, and other services (CCS) correlates with a 
decrease of $173.68 in GDP per capita, while Hungary experiences a reduction of 
$516.28 under similar conditions. Additionally, mobile subscriptions (MSC) and 
the contribution of high-tech manufacturing value-added (MHTMV) are 
associated with adverse effects on Azerbaijan’s economic development. Forecasts 
generated through machine learning further predict economic expansion in 
Hungary over the coming five years, whereas Azerbaijan is projected to encounter 
economic contraction. The study concludes by underscoring the importance of 
long-term policy measures centred on digital infrastructure, innovation potential, 
and human capital enhancement in order to optimise the economic outcomes of 
digital transformation. 

 
1. Introduction 

In recent years, sustainability has emerged as a guiding principle for framing both national and 
international development strategies. It is instrumental in facilitating efficient allocation of 
resources to attain targeted outcomes across social, economic, and environmental dimensions. 
Furthermore, sustainability contributes to improved quality of life by promoting access to 
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education, reducing income disparities, ensuring social equity, enhancing food security, and 
supporting livelihoods. Realising sustainability necessitates coordinated efforts spanning policy, 
technological innovation, and institutional support, which is particularly critical in the context of 
developing nations. Among the catalysts of sustainable development in the 21st century, 
digitalisation has gained increasing prominence. It entails the integration of digital technologies into 
economic, administrative, and social systems to improve efficiency, innovation, and accessibility 
[60]. As a consequence of digitalisation, digital transformation significantly alters the structure and 
functioning of economies by enabling data-informed policymaking, intelligent automation, 
continuous monitoring, and citizen-oriented service delivery.  

For developing countries, digitalisation presents both significant opportunities and considerable 
challenges. While it has the potential to accelerate economic growth and modernise public 
institutions, limitations in digital infrastructure and human capital frequently hinder equitable 
implementation. These complexities render the relationship between digitalisation and sustainable 
development both theoretically significant and practically relevant. The interconnectedness of 
digitalisation, sustainability, and economic growth is increasingly acknowledged in academic 
research and policy discussions [31; 43; 59]. Schumpeterian innovation theory underscores the role 
of technological disruptions in prompting long-term structural shifts and economic regeneration 
[74]. Similarly, endogenous growth theory highlights the capacity of digital investments to enhance 
productivity and support sustainable development through human capital, research, and innovation 
[72]. Sustainable digitalisation, as posited by socio-technical systems theory, requires a balance 
between technological advancement, institutional support, and human adaptation [22].  

To address the practical dimensions of sustainable digitalisation, the Digitainability Assessment 
Framework (DAF) was introduced as a tool to evaluate the impact of digital interventions on the 
Sustainable Development Goals (SDGs), drawing on the Theory of Change (ToC). DAF aims to assist 
developers, policymakers, and stakeholders by providing a comprehensive impact assessment of 
digital products and services while identifying opportunities for enhancement [25]. Nevertheless, 
empirical validation of these conceptual models remains scarce within the context of emerging and 
post-socialist economies. This study seeks to bridge this gap by exploring the digitalisation–
sustainability relationship through an empirical assessment of digitalisation’s impact on sustainable 
economic development in two contrasting national settings: Azerbaijan and Hungary. These 
countries were selected due to their divergent economic systems and distinct digital policy 
approaches. Azerbaijan has prioritised energy efficiency, e-governance, and economic 
diversification, whereas Hungary has focused on advancing smart agriculture, renewable energy, 
and Industry 4.0 technologies. As a result, this comparative analysis provides an opportunity to:  
1) Examine how varying institutional and economic contexts influence the effectiveness of 

digitalisation in fostering sustainable economic outcomes;  
2) Derive contextual insights that are applicable to both EU-aligned (Hungary) and transition 

economies (Azerbaijan).  
Hungary has achieved substantial advancements in its digital economy, driven by national 

initiatives such as the Digital Success Programme, the Digital Education Strategy of Hungary, and the 
National Digitalisation Strategy 2022–2030. These efforts have supported an estimated annual GDP 
growth rate of 5 percent between 2015 and 2021. Consequently, the digital sector now represents 
approximately 10 percent of Hungary’s GDP, with the ICT industry employing 4.8 percent of the 
national workforce as of 2021. In contrast, while Azerbaijan’s digital transformation is relatively 
more modest, it has made meaningful contributions since 2016. The adoption of advanced 
technologies has accounted for 1.8 percent of GDP growth Bank [7], in addition to reducing 
administrative expenses by 25 percent and enhancing rural access to public services by 35 percent 
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[17]. These developments underscore the growing relevance of digitalisation in Azerbaijan’s 
economic and social evolution.  

Despite the proliferation of research on digital transformation, most studies have concentrated 
on advanced economies. Few investigations, particularly those integrating both econometric and 
machine learning approaches, have assessed the economic effects of digitalisation in EU-associated 
and transition countries. While the global narrative increasingly advocates for digital 
transformation, empirical consensus regarding its direct impact remains limited for small and 
medium-sized economies. This ambiguity arises from differing developmental paths and national 
contexts. The nexus between digitalisation and economic growth is highly complex, temporally 
sensitive, and context-dependent. This is particularly evident in the cases of Azerbaijan and 
Hungary, where unique political settings, institutional structures, and technological priorities shape 
digital outcomes.  

The overarching aim of this study is to evaluate the role of digitalisation in driving sustainable 
economic development in Azerbaijan and Hungary. The specific objectives include:  
1) Constructing a robust indicator system to measure digitalisation and economic sustainability;  
2) Investigating both the short-term and long-term effects of digitalisation on sustainable 

economic development through econometric modelling;  
3) Enhancing predictive accuracy using classical machine learning models to generate tailored 

economic forecasts;  
4) Formulating policy recommendations informed by empirical evidence to optimise economic 

returns from digital investments.  
This research contributes to the literature by offering a comparative, data-driven analysis of two 

nations with contrasting digital strategies and economic profiles. It advances methodological rigour 
by employing machine learning techniques to improve the accuracy and policy relevance of 
development forecasts. The findings are of significant value to national policymakers, international 
organisations, and researchers concerned with digital economic transformation, as they offer 
actionable insights for enhancing the efficacy of digital investments, advancing sustainability goals, 
and reinforcing economic resilience.  

The remainder of this paper is structured as follows. Section 2 provides a detailed review of the 
literature, highlighting key theoretical frameworks and critically evaluating empirical research on 
digital transformation and sustainability across diverse national contexts. Section 3 outlines the 
research methodology, including the development of the indicator system, data sources, and 
analytical tools. It also presents an overview of the econometric and machine learning techniques 
utilised in the study. Section 4 presents the empirical findings and discussion, offering comparative 
insights for Azerbaijan and Hungary. This includes descriptive statistics, model outputs, and analysis 
under two distinct scenarios, followed by a discussion on theoretical and practical implications in 
relation to existing scholarship and policy relevance. The final section summarises the main findings, 
presents evidence-based recommendations, and suggests directions for future research.  
 
2. Literature Review 

A central aim of sustainable economic development is to ensure that vulnerable and 
economically marginalised populations can access secure and enduring livelihood opportunities. 
Over the long term, the development of macroeconomic strategies and the creation of incentive 
structures for the efficient use of natural resources provide a solid framework for promoting 
policies consistent with the principles of sustainable growth [10]. One of the core components 
underpinning sustainable economic development is green growth [9; 58; 82]. Nonetheless, green 
growth by itself is insufficient to achieve comprehensive sustainability if the degradation and 
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depletion of global ecosystems remain unaddressed. Continued reliance on ecological systems to 
meet human demands contributes to the erosion of crucial ecosystem services, thereby 
jeopardising the long-term viability of both environmental and economic systems [8]. Emerging 
scholarship highlights that achieving sustainability necessitates the integration of multiple 
dimensions, including digitalisation, environmentally conscious innovation, and sustainable 
economic strategies. Transitioning towards a sustainable economic model entails the adoption of 
advanced technological solutions, the promotion of production methods that minimise resource 
consumption, and the implementation of policies that simultaneously support economic expansion 
and ecological conservation [73; 82].  

2.1 Empirical Studies on Digitalisation and Sustainable Development 
Existing scholarly evidence demonstrates that digitalisation serves as a highly influential 

instrument for advancing sustainable development. It contributes to enhanced efficiency, 
profitability, and long-term sustainability across a range of sectors and industries [12; 39; 41; 51; 64; 
83]. As natural resources become increasingly scarce, their prudent management and equitable 
allocation are recognised as central to sustainable development objectives [54]. In this regard, 
digital transformation plays a pivotal role by improving the utilisation of natural assets through 
data-driven strategies and optimisation processes [18; 93]. Within the context of the digital era, 
countries across the globe are prioritising the implementation of strategic policies that support the 
attainment of Global Sustainable Development (GSD). GSD is widely referenced in academic 
literature and is defined as a developmental process that satisfies current socio-economic needs 
while safeguarding the well-being of future generations [40].  

Given its importance, identifying and analysing the determinants of sustainability at the global 
scale remains a vital concern in both academic inquiry and policy design. In an effort to explore the 
linkage between digitalisation and global sustainable development across 34 countries, a 
comparative analysis was conducted using a set of composite indices developed via the z-score 
method. These included the Economic Development Index, Social Development Index, 
Environmental Sustainability Index, and Information and Communication Technology Index. The 
empirical findings indicated that digitalisation significantly enhanced both economic and social 
development indicators, with economic gains averaging 1.8 percent, largely due to the expansion of 
digital services. However, a concurrent 0.6-point decline in environmental sustainability metrics was 
also observed, highlighting the urgent need for environmentally sensitive digital policy frameworks 
[76].  

In a similar study Lei et al. [43] examined OECD countries using panel regression techniques to 
evaluate the impact of digital investment on sustainability metrics. Their analysis established a 
robust long-term association, with ICT investments resulting in a 2.4 percent rise in GDP per capita 
and a 1.5 percent increase in the Human Development Index. The policy implications of advancing 
digital technologies to address major sustainability challenges were also explored by [68]. Analysing 
data from 20 countries (comprising both developed and developing nations), their findings revealed 
that in 85 percent of cases, digital infrastructure development was positively associated with 
economic growth.  Jiao and Sun [36] applied time-series models to assess the impact of digital 
infrastructure in China, reporting that a 1 percent increase in digital investment led to a 0.9 percent 
rise in GDP over the long term. Complementing this, Zhang et al. [92] emphasised the sectoral 
contributions of digital finance and e-commerce, which significantly supported regional economic 
convergence.  

Trade activities, particularly imports and exports, continue to play a key role in economic 
performance by influencing industrial growth, trade balance, and national income. Accordingly, the 
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international exchange of goods, services, and advanced technologies remains a prominent subject 
in economic research [38; 49; 50]. However, findings from empirical investigations involving both 
developing and developed economies suggest that high-technology exports do not exert a 
statistically significant influence on GDP growth. Instead, the studies revealed unidirectional 
causality running from GDP growth to high-tech exports [77]. Beyond digitalisation alone, the 
broader concept of the digital economy is increasingly being examined for its contribution to 
sustainability.  

For instance, an empirical analysis employing the Cobb–Douglas production function in China 
found that the digital economy accounted for approximately 1.6 percent of total factor productivity 
growth [47]. Further, the integration of ‘data elements’ into neoclassical and new structural general 
equilibrium models revealed that digitalisation positively influenced economic growth in developing 
countries. These studies emphasise the importance of tailoring digital strategies to align with 
country-specific developmental conditions and policy environments [34]. Luo et al. [46] found that 
the development of the digital economy significantly fosters green innovation in China, suggesting 
that digitalisation not only supports economic performance but also contributes to sustainable 
development outcomes. Moreover, subnational or regional variations in digitalisation also 
demonstrate considerable influence on economic outcomes, as shown in recent research on 
regional digital transitions [47].  

2.2 Research Gaps and Study Contribution 
A growing body of research has explored the influence of digitalisation on economic 

performance, with particular emphasis on its sectoral impacts and its broader contribution to 
national development through the digital economy. These studies highlight the transformative 
potential of digitalisation in both public and private sectors, indicating its role in boosting 
productivity, fostering innovation, and introducing novel operational processes. However, despite 
these insights, much of the literature remains fragmented. Many studies concentrate on isolated 
aspects or mechanisms of digitalisation, lacking an integrative framework that holistically captures 
the multifaceted relationship between digital transformation and sustainable economic 
development.  

In addition, although existing theoretical and empirical literature recognises the benefits 
associated with digitalisation, it often overlooks or underrepresents the institutional and structural 
challenges involved. Key issues such as data privacy, regional disparities in digital competence, 
inequitable access to digital infrastructure, and the substantial initial investment required for digital 
transformation are frequently insufficiently addressed. As a result, many of the policy suggestions 
derived from prior studies are either overly narrow or fail to reflect the diverse capacities of 
countries that are situated at different stages of digital advancement. A further limitation lies in the 
methodological choices employed. Many studies rely solely on conventional econometric tools and 
short-term associations without exploring the long-term predictive capacity of digitalisation using 
advanced modelling approaches, such as machine learning. The absence of comparative analytical 
frameworks that assess EU-aligned and transition or resource-dependent economies also restricts 
the broader applicability and contextual relevance of their findings. In light of these limitations, the 
present study seeks to address conceptual, empirical, and predictive gaps in the literature as 
follows:  

2.2.1 Conceptual Contribution:  
A tailored indicator system is developed, linking measurable components of sustainable 

economic development with core elements of digitalisation, such as ICT infrastructure, digital trade, 
and digital literacy;  
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2.2.2 Empirical Contribution 
The study offers a robust, multi-faceted analysis of the digitalisation–development nexus in 

Azerbaijan and Hungary by combining supervised machine learning with both short-term and long-
term econometric models;  

2.2.3 Predictive and Policy Contribution 
By forecasting developmental trajectories and examining current digital-economic relationships, 

the research delivers evidence-based policy recommendations designed to inform and shape 
sustainable digital strategies across transition and EU-member economies.  

 
3. Research Methodology  

A critical examination of existing literature and conceptual models affirms the significant role 
that digitalisation plays in advancing sustainable economic development. Accurately evaluating this 
impact necessitates the use of ICT indicators that capture the status of digital infrastructure, levels 
of adoption, and the extent of technology-driven economic activities. As sustainable economic 
growth seeks to fulfil societal demands while safeguarding natural resources and maintaining 
ecological balance, digitalisation within this framework must be assessed across several 
fundamental dimensions, including productivity enhancement, technological innovation, social 
inclusion, environmental sustainability, and operational efficiency. Based on these considerations, 
this study identifies a set of ICT indicators that serve as core components of digitalisation, which are 
presented in Table 1.  

Table 1 
ICT Indicators 

Indicator Unit Referenced in Existing Literature 
Internet Penetration Rate 
(IPR)  

A continuous variable expresses the percentage of 
individuals using the Internet within the total population. 

ITU [32] 
Harb [28] Czernich et al. [15] 

ICT Service Exports 
(ICT_SE) 

A continuous variable expresses the share of ICT service 
exports as a percentage of total service exports. 

Tian and Son [80] 
Vu [84] 

ICT Goods Imports 
(ICT_GI) 

A continuous variable expresses the share of ICT goods 
imports as a percentage of total goods imports. 

Roger et al. [71] 
Yoon [90] Dedrick et al. [16] 

Computer, 
Communications, and 
Other Services (CCS) 

A continuous variable. It represents the share of computer, 
communications, and other services in total commercial 
service exports and is expressed as a percentage 

Li et al. [44] 
Mulenga and Mayondi [52] 

Medium and High-Tech 
Manufacturing Value 
Added (MHTMV) 

A continuous variable. It represents the share of medium 
and high-tech manufacturing value added in total 
manufacturing value added and is expressed as a percentage 

Ma et al. [47] 
Peng et al. [63] 

Fixed Broadband 
Subscriptions (FBS) 

A continuous variable expressing the number of fixed 
broadband subscriptions per 100 people 

Czernich et al. [15]  

Mobile Cellular 
Subscriptions (MCS)  

A continuous variable expressing the number of mobile 
cellular subscriptions per 100 people 

Wiranatakusuma and Zakaria [87] 
Musa et al. [53] 
Amaghionyeodiwe and 
Annansingh-Jamieson [4] 

Source: Developed by Author, 2025 

 
The primary objective of this research is to analyse the extent to which digitalisation influences 

economic growth and facilitates sustainability. Given that GDP per capita serves as a standardised 
and widely accepted indicator of economic development, this study evaluates sustainable economic 
advancement through its association with key ICT-related variables. Accordingly, an economic 
model is constructed to explore the relationship between digital integration and sustainable 
economic development, allowing for a comprehensive assessment of how digital technologies 
contribute to long-term economic progress.  
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𝐺𝐷𝑃_𝑝𝑐 = 𝑓(𝐼𝑃𝑅, 𝐼𝐶𝑇_𝑆𝐸,   𝐼𝐶𝑇_𝐺𝐼, 𝐶𝐶𝑆, 𝑀𝐻𝑇𝑀𝑉, 𝐹𝐵𝑆, 𝑀𝐶𝑆)                  (1) 
The empirical formulation of the model is outlined as follows: 
GDP_pc𝑡 = 𝛼0 + 𝛼1𝐼𝑃𝑅𝑡 + 𝛼2ICT_SE𝑡 + 𝛼3ICT_GI𝑡 + 𝛼4𝐶𝐶𝑆𝑡 + 𝛼5MHTMV𝑡 + 𝛼6FBS𝑡 +

𝛼7MCS𝑡 +  𝑢𝑡                         (2) 
Herein,  
GDP_pct = Explained Variable;  IPRt, ICT_SEt, ICT_GIt, CCSt, MHTMVt, FBSt, MCSt = 

Explanatory Variables in the t Year; 𝑢𝑡 = Unobservable (error term); 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6 = Slope 
Parameters (elasticities). 

3.1 Stationarity 
To estimate effects accurately, the stationarity of the time series must first be tested. Optimal 

lag selection is a key challenge in unit root testing, extensively explored by researchers [1; 14; 48; 
88]. Selection criteria include FPE, HQIC Hannan and Quinn [27], BIC Schwarz [75], and AIC [2]. A 
time series is stationary if its mean, variance, and autocorrelation remain constant over time. 
Common tests include the ADF, PP, KPSS, DF-GLS, and Zivot-AndrewsThe null and alternative 
hypotheses associated with the widely employed stationarity tests—specifically, the Augmented 
Dickey-Fuller (ADF) test [19] and the Phillips-Perron (PP) test [67]—which are grounded in the 
autoregressive model (2), are formulated as follows: 

𝐻0: The process has a unit root; 𝐻1: The process does not have a unit root. 
In instances where time series variables are stationary, indicating the absence of a deterministic 

trend, analytical techniques such as Ordinary Least Squares (OLS) or Vector Autoregressive (VAR) 
models can be applied to yield consistent and unbiased parameter estimates. However, when all 
variables exhibit non-stationarity but are cointegrated—implying a stable long-term association—
the appropriate methodological choice is the Vector Error Correction Model (VECM), which is 
grounded in the Johansen cointegration methodology [37]. For datasets comprising variables with 
differing integration orders, specifically where some variables are stationary at level (I(0)) and 
others achieve stationarity following first differencing (I(1)), the Autoregressive Distributed Lag 
(ARDL) model provides a robust alternative. Originally discussed in early econometric work [3] and 
later refined by Pesaran, Shin, and Smith [65; 66], the ARDL framework accommodates both short-
term dynamics and long-term equilibrium relationships, irrespective of whether the explanatory 
variables are exclusively I(0), I(1), or a combination of both integration levels.  

3.2 Cointegration Test 
Cointegration analysis provides an essential econometric method for identifying possible long-

term equilibrium relationships among non-stationary time series variables. The foundational 
concept was initially proposed by Granger [24] and later expanded through further theoretical 
advancements by [24]. Several testing methodologies have since been developed to examine 
cointegration, including the Engle–Granger Two-Step Test [21], the Johansen Cointegration Test 
[37], and the ARDL Bounds Testing Procedure [56; 65; 66]. The Engle–Granger approach is limited to 
analysing bivariate systems, whereas both the Johansen and ARDL frameworks are suitable for 
assessing multivariate relationships. The Johansen method is applicable only when all series are 
integrated of order one (I(1)), while the ARDL Bounds approach is more flexible, accommodating 
combinations of level stationary (I(0)) and first-difference stationary (I(1)) variables. In instances 
where cointegration is detected, it becomes necessary to estimate a VECM, based on the Johansen 
framework, to capture both the long-run equilibrium dynamics and short-run deviations. The 
inclusion of the Error Correction Term (ECT) enables interpretation of the adjustment speed with 
which short-term disequilibria converge towards long-run stability. The functional form of this 
relationship is represented as follows:  
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∆GDP_pc𝑡 = 𝛼0 + ∑ 𝜑𝑖∆GDP_pc𝑡−𝑖
𝑚
𝑖=1 + ∑ 𝜌1𝑗∆𝐼𝑃𝑅𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝜌2𝑗∆ICT_SE𝑡−𝑗

𝑚
𝑗=0 +

∑ 𝜌3𝑗∆ICT_GI𝑡−𝑗
𝑚
𝑗=0 + ∑ 𝜌4𝑗∆𝐶𝐶𝑆𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝜌5𝑗∆MHTMV𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝜌6𝑗∆FBS𝑡−𝑗

𝑚
𝑗=0 +

∑ 𝜌7𝑗∆MCS𝑡−𝑗
𝑚
𝑗=0 + 𝜗𝐸𝐶𝑀𝑡−1 + 𝑢𝑡                                 (3) 

Herein, 𝜑  and 𝜌 are the short-run dynamic coefficients of the model and 𝜗 is the speed of 
adjustment.  

In the absence of cointegration, the relationship between variables can still be effectively 
examined using the ARDL framework, particularly through the Bounds Testing Approach. 
Accordingly, Equation (2) may be reformulated in the ARDL specification as follows: 

GDP_pc𝑡 = 𝛼0 + ∑ 𝛽𝑖GDP_pc𝑡−𝑖
𝑚
𝑖=1 + ∑ 𝛼1𝑗𝐼𝑃𝑅𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝛼2𝑗ICT_SE𝑡−𝑗

𝑚
𝑗=0 +

∑ 𝛼3𝑗ICT_GI𝑡−𝑗
𝑚
𝑗=0 + + ∑ 𝛼4𝑗𝐶𝐶𝑆𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝛼5𝑗MHTMV𝑡−𝑗

𝑚
𝑗=0 + ∑ 𝛼6𝑗FBS𝑡−𝑗

𝑚
𝑗=0 +

∑ 𝛼7𝑗MCS𝑡−𝑗
𝑚
𝑗=0 + 𝑢𝑡                                         (4) 

Where 𝛼0 is the intercept, 𝑚 is the lag order, 𝑢𝑡 is the error term.  
GDP_pc𝑡 is dependent variable while 𝐼𝑃𝑅𝑡 , ICT_SE𝑡, ICT_GI𝑡, 𝐶𝐶𝑆𝑡, MHTMV𝑡, FBS𝑡, MCS𝑡 are 

independent (explanatory) variables, 𝛼𝑣𝑗, (𝑣 = 1, 𝑡 express the coefficients of explanatory variables, 

𝑗 = 0, 𝑚) and 𝛽𝑖, (𝑖 = 1, 𝑚) are the coefficients (elasticities), 𝑚 is the lag order.  

3.3 Supervised Machine Learning Models 
Econometric techniques are essential for estimating variable influences and enabling meaningful 

economic interpretations. However, attaining high predictive accuracy increasingly necessitates the 
integration of machine learning (ML) methodologies. Within the domain of supervised learning, 
regression analysis serves a critical role by forecasting continuous target variables based on one or 
more explanatory features. Among the most frequently utilised models for time series forecasting 
are Random Forest, XGBRegressor, Long Short-Term Memory (LSTM) neural networks, ARIMA, and 
Support Vector Regression (SVR), as evidenced by numerous studies [23; 35; 57; 61; 62; 78].  ARIMA 
is particularly effective for capturing linear patterns and autocorrelation within stationary time 
series data, while also accommodating non-stationarity through differencing techniques. Its 
strength lies in its interpretability, which enhances its relevance for economic modelling and policy 
analysis. This model is especially advantageous when historical data trends are instrumental in 
forecasting future outcomes [13]. ARIMA has been extensively applied in both empirical and 
theoretical research settings [11; 20; 85; 86; 89].  

In contrast, XGBRegressor is particularly suited to multivariate forecasting tasks and is capable 
of capturing non-linear interactions by identifying complex dependencies within datasets. Its 
growing significance in both applied and theoretical contexts is reflected across a wide range of 
recent studies [42; 55; 79; 91]. Based on the specific characteristics of the dataset under analysis, 
including stationarity and structural complexity, this research employs both ARIMA and 
XGBRegressor models. The general mathematical representations for these models are presented in 
Equations (5) and (6), respectively.  

GDP_pc𝑡
̂ = ∑ 𝑓𝑘(𝐼𝑃𝑅𝑡, ICT_SE𝑡, ICT_GI𝑡 , 𝐶𝐶𝑆𝑡, MHTMV𝑡, FBS𝑡, MCS𝑡)𝐾

𝑘=1                       (5) 
Where,  

GDP_pc𝑡
̂  is the predicted value of GDP_pc𝑡 at time t. 

In this model, K denotes the total number of decision trees utilised. The learning process 
involves the sequential construction of these trees, where each successive tree is trained to reduce 
the residual errors of its predecessors. This is achieved through the gradient boosting method, 
which incrementally refines the model's predictive accuracy over successive iterations.  

GDP_pc𝑡 = 𝜇 + ∑ 𝜙𝑖GDP_pc𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗ϵ𝑡−𝑗

𝑞
𝑗=1 + 𝜖𝑡                (6) 

Where,  



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 185-208 

193 

 
 

 

GDP_pc𝑡 is the value of the time series at time t 
𝜇 is the constant (drift) term. 
𝜙𝑖  are the autoregressive (AR) parameters for lag 𝑖 (up to 𝑝). 
𝜃𝑗  are the moving average (MA) parameters for lag j (up to q). 

𝜖𝑡 is the error term (white noise at time t). 
p and q are the number of autoregressive and moving average terms, respectively. 

3.4 Data 
As the study aims to assess how digitalisation contributes to sustainable development in 

Azerbaijan and Hungary, dedicated databases have been constructed for both countries. The 
analysis employs time series data from 2000 to 2023 (24 observations), focusing on core economic 
and digitalisation indicators: GDP per capita, Internet Penetration Rate, ICT Service Exports, ICT 
Goods Imports, Computer, Communications and Other Services, Medium and High-Tech 
Manufacturing Value Added, Fixed Broadband Subscriptions, and Mobile Cellular Subscriptions. The 
data have been sourced from secondary materials, including the Statistical Committee of the 
Republic of Azerbaijan, the Hungarian Central Statistical Office, Statista, and Trading Economics.  

 
4. Empirical Analysis and Discussion 

This study adopts a combined methodological approach, employing both descriptive and 
analytical techniques by integrating conventional econometric models with contemporary machine 
learning algorithms to ensure reliable economic forecasting. The analytical process involves the 
following sequential steps. 

4.1 Statistical Analysis of Variables 
A thorough examination of the fundamental characteristics of key economic variables—such as 

their distributional properties, interrelationships, and temporal trends—is a critical preliminary step 
in empirical research. This process facilitates pattern recognition and informs the modelling 
strategy. In recognition of this significance, the study applies descriptive statistical methods, 
correlation analysis, and data visualisation tools to explore the initial dynamics of the dataset. The 
summary statistics for the core indicators used in the analysis for both Azerbaijan and Hungary are 
presented in Table 2.  

Table 2 
Descriptive Statistics 

 GDP_PER_CAP FBS CCS ICT_GI ICT_SE IPR MCS MHTMV 
Azerbaijan 
 Mean  4473.363  10.20625  28.00000  4.377917  3.083333  46.88333  74.64125  11.00000 
 Median  4824.300  12.56500  27.50000  3.950000  2.600000  52.10000  101.3000  10.00000 
 Maximum  7990.800  20.88000  48.00000  8.970000  6.800000  88.00000  108.0000  18.00000 
 Minimum  662.9000  0.000000  12.00000  2.400000  0.300000  0.000000  5.000000  6.000000 
 Std. Dev.  2525.454  9.254744  11.18617  1.600587  1.784637  35.33245  40.59191  2.978182 
Jarque-Bera  1.571638  3.533202  1.511686  12.15591  1.666609  3.008103  3.701514  4.258701 
 Probability  0.455746  0.170913  0.469614  0.002293  0.434611  0.222228  0.157118  0.118914 
Hungary 
 Mean  12364.58  20.51167  48.83333  16.67917  7.633333  60.12500  100.6125  52.95833 
 Median  11750.00  23.70500  50.00000  17.50000  8.100000  69.50000  104.5000  52.50000 
 Maximum  16300.00  36.79000  60.00000  21.20000  12.70000  91.00000  141.7000  59.00000 
 Minimum  8970.000  0.030000  37.00000  10.00000  2.500000  7.000000  30.00000  46.00000 
 Std. Dev.  2072.199  12.46330  4.650074  3.591654  2.640103  25.70115  24.33363  3.507497 
Jarque-Bera  1.242651  2.159615  3.076963  2.225942  0.509780  2.875204  10.06944  0.254642 
 Probability  0.537232  0.339661  0.214707  0.328581  0.775002  0.237497  0.006508  0.880451 
Source: Author’s Calculation, 2025       
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The descriptive evaluation of major economic variables reveals notable contrasts in the levels of 
economic performance and digital advancement between Azerbaijan and Hungary. Hungary 
demonstrates comparatively higher levels of development across all key indicators, including GDP 
per capita, ICT trade (covering both the import of ICT goods and the export of ICT services), fixed 
broadband penetration, and the share of high-technology manufacturing. In contrast, Azerbaijan 
exhibits greater variability in certain metrics and lags particularly in mobile penetration and ICT 
service exports. Normality of the data was assessed using the Jarque–Bera test. The findings 
indicate that most variables adhere to the assumption of normal distribution, with the exception of 
ICT Goods Imports (ICT_GI) in Azerbaijan and Mobile Cellular Subscriptions (MCS) in Hungary, both 
of which deviate from normality at the 5% significance level. To assess the potential presence of 
multicollinearity, a correlation matrix (Figure 1) was initially analysed, followed by the computation 
of the Variance Inflation Factor (VIF), as reported in Table 3.  

 
Fig. 1: Correlation Analysis Heatmap  

Source: Developed by the Author using Python 

Based on the correlation and VIF results, variables exhibiting high interdependence were 
removed from the model. Following these adjustments, multicollinearity was effectively mitigated, 
as evidenced by the final VIF diagnostics summarised in Table 3. 

Table 3 
VIF Results  

Azerbaijan Hungary 
Before Adjustment After Adjustment Before Adjustment After Adjustment 
Variable  VIF Variable  VIF Variable  VIF Variable  VIF 
GDP_PER_CAP 12.36 GDP_PER_CAP 5.95 GDP_PER_CAP 9.63 GDP_PER_CAP 5.77 
ICT_SE 2.09 ICT_SE 1.91 ICT_SE 17.31 ICT_SE 9.13 
ICT_GI 1.52 ICT_GI 1.05 ICT_GI 5.38 ICT_GI 4.21 
CCS 2.88 CCS 1.20 CCS 3.67 CCS 3.10 
MCS 76.13 MCS 7.68 MCS 15.28 MCS 5.97 
FBS 63.62 MHTMV 1.52 FBS 108.26 MHTMV 3.72 
IPR 145.50   IPR 188.84   
MHTMV 4.07   MHTMV 5.05   

Source: Author’s Calculation, 2025 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 185-208 

195 

 
 

 

4.2 Testing Stationarity  
Lag selection plays a pivotal role in time series modelling, as it determines the extent to which 

historical values influence the current and future behaviour of a variable. The accuracy and stability 
of econometric models are highly dependent on identifying the optimal lag structure, particularly in 
analyses involving unit root testing, cointegration assessments, and Vector Autoregression (VAR) 
modelling [27; 30; 33; 45]. In light of this, the optimal lag length was determined prior to performing 
stationarity tests. Both one and two lag structures were assessed, and using selection criteria 
including the Akaike Information Criterion (AIC), Final Prediction Error (FPE), Hannan–Quinn 
Criterion (HQ), and Likelihood Ratio (LR) test results, the appropriate lag length was identified as 
two for both Azerbaijan and Hungary (Table 4).  

Table 4 
VAR Lag Order Selection Criteria 

Hungary 
 Lag LogL LR FPE AIC SC HQ 
0 -461.3695 NA   1.14e+11  42.48814  42.78569  42.55823 
1 -357.4685  141.6831  2.73e+08  36.31532  38.39822  36.80599 
2 -287.1487   57.53443*   30277198*   33.19534*   37.06358*  34.10658* 
Azerbaijan 
0 -498.1457 NA   3.23e+12  45.83143  46.12898  45.90152 
1 -397.5631  137.1581  1.05e+10  39.96028  42.04318  40.45095 
2 -323.6718   60.45651*   8.38e+08*   36.51562*   40.38386*  37.42686* 
 * Indicates lag order designated by the criterion 
Endogenous variables: GDP_PER_CAP, ICT_SE, ICT_GI, MHTMV, MCS, CCS; Included observations: 22  

Source: Author’s Calculation, 2025 
 
The outcomes of the ADF test indicate that GDP per capita, ICT_SE, ICT_GI, and MHTMV are 

non-stationary in their level forms but become stationary following first differencing, identifying 
them as I(1) variables (Table 5). The variable CCS is nearly stationary at level and attains full 
stationarity after first differencing. In the case of MCS, second differencing was applied for both 
Azerbaijan and Hungary. The resulting p-values under constant (C) and constant with trend (C&T) 
specifications—0.0014 and 0.0002 for C, and 0.002 and 0.0013 for C&T—are all below the 5 percent 
significance threshold, confirming that MCS is integrated of order two (I(2)).  

Given the mixed order of integration across the dataset, where MCS is I(2) while the other 
variables are I(0) or I(1), a VECM is deemed the most appropriate modelling framework for 
capturing both the long-term equilibrium relationships and short-run dynamics.  

Table 5 
Augmented Dickey-Fuller (ADF) Unit Root Test Results 

Hungary 
Variables Level 1st level 

C C&T C C&T 
GDP_per 
cap (USD) 

T-Statistic  0.017271 -1.310518 -4.406175 -4.355016 
P-Value  0.9510  0.8593  0.0024  0.0119 

ICT SE (%) T-Statistic -1.892851 -2.095786 -4.580715 -4.728198 
P-Value  0.3295  0.5210  0.0016  0.0055 

ICT GI (%) T-Statistic -1.934366 -2.164207 -4.321944 -4.127996 
P-Value  0.3117  0.4857  0.0029  0.0189 

CCS (%) T-Statistic -3.155816 -5.064443 -5.236153 -5.252499 
P-Value  0.0363  0.0027  0.0004  0.0020 

MCS  T-Statistic -2.984295 -2.781314 -2.475518 -1.714655 
P-Value  0.0514  0.2172  0.1345  0.7101 

MHTMV T-Statistic -1.737978 -1.302294 -4.721168 -5.259638 
P-Value  0.4000  0.8615  0.0012  0.0018 
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Table 5 (cont…) 
Augmented Dickey-Fuller (ADF) Unit Root Test Results 

Azerbaijan  

GDP_per 
cap (USD) 

T-Statistic -1.815565 --1.963123 -3.286939 -3.233110 
P-Value  0.3635   0.5883  0.0282  0.1039 

ICT SE (%) T-Statistic -2.410727  0.1503 -4.117447 -4.224677 
P-Value -3.206329  0.1088  0.0052  0.0171 

ICT GI (%) T-Statistic -0.437095 -0.610205 -3.091739 -4.701120 
P-Value  0.8853  0.9672  0.0435  0.0062 

CCS (%) T-Statistic -1.591829 -1.812488 -4.181884 -4.104043 
P-Value  0.4705  0.6655  0.0040  0.0199 

MCS  T-Statistic -1.923279 -1.412021 -1.765590 -2.199077 
P-Value  0.3162  0.8282  0.3865  0.4669 

MHTMV  T-Statistic -0.810460 -1.309076 -5.025035 -5.711922 

P-Value  0.7972  0.8597  0.0006  0.0007 

Source: Author’s Calculation, 2025 

4.3 Johansen's Test to Cointegration 
The Johansen test is employed to evaluate whether a long-run equilibrium association exists 

among non-stationary time series variables. The findings of this study confirm the presence of 
cointegration up to rank 4 for both Azerbaijan and Hungary (Table 6). In light of these results, the 
use of a VECM is warranted for both countries, as the existence of cointegration justifies its 
application. The VECM framework is particularly suited to datasets exhibiting long-term equilibrium 
relationships, as it enables the simultaneous modelling of both long-run associations and short-term 
adjustments.  

Table 6 
Johansen Cointegration Test Result 

Countries/ ranks Azerbaijan Hungary 

None Trace Statistic 186.53 Trace Statistic 195.05 
Critical Value (5%) 95.75 Critical Value (5%) 95.75 

At Most 1 Trace Statistic 117.96 Trace Statistic 115.35 
Critical Value (5%) 69.82 Critical Value (5%) 69.82 

At Most 2 Trace Statistic 71.37 Trace Statistic 52.38 
Critical Value (5%) 47.86 Critical Value (5%) 47.86 

At Most 3 Trace Statistic 35.3 Trace Statistic 30.22 
Critical Value (5%) 29.80 Critical Value (5%) 29.79 

At Most 4 Trace Statistic 15.8 Trace Statistic 13.07 
Critical Value (5%) 15.49 Critical Value (5%) 15.49 

At Most 5 Trace Statistic 0.95 Trace Statistic 1.74 
Critical Value (5%) 3.84 Critical Value (5%) 3.84 

Source: Author’s Calculation, 2025 

4.4 Estimate the VECM Model 
The VECM is employed to estimate both the short-term dynamics and long-term equilibrium 

relationships between GDP per capita and its associated explanatory variables. The estimation 
results reveal three distinct cointegrating vectors (CointEq1, CointEq2, and CointEq3), indicating the 
existence of stable long-run associations among the variables under investigation for both 
Azerbaijan and Hungary (Table 7).  
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Table 7 
VECM Results 

Variable  CointEq1 CointEq2 CointEq3 Short-Run Dynamics 

 AZ HUN AZ HUN AZ HUN AZ HUN 
GDP_PER_CAP (-
1) 

1.000 1.000 0.000 0.000 0.000 0.000 0.192 
[ 0.86] 

0.066   
[ 0.14] 

ICT_GI (-1) 0.000 0.000 1.000 1.000 0.000 0.000 -130.62 
[-0.61] 

-25.69  
 [-0.39] 

ICT_SE (-1) 0.000 0.000 0.000 0.000 1.000 1.000 146.37 
[ 0.78] 

23.715  
[ 0.17] 

MCS(-1) -77.77  
  [-19.86]* 

-12.74 
 [-1.41] 

0.057  
[ 6.61]* 

-0.325 
 [-4.33]* 

0.025  
[ 6.98]* 

 0.039 
 [ 1.51] 

-71.061 
[-1.58] 

18.634  
[1.056] 

MHTMV (-1) -56.79  
[-0.67] 

-31.887 
 [-0.71] 

-0.551  
[-2.96]* 

 1.796 
 [ 4.83]* 

0.105  
[ 1.35] 

-0.295 
[2.34]* 

57.488 
[ 0.49] 

-73.032   
[-1.53] 

CCS (-1) -173.68  
[-8.21]* 

-516.28 
 [-14.82]* 

0.101  
[ 2.14]* 

 1.540 
 [ 5.32]* 

-0.079  
[-3.99]* 

-0.871 
[-8.86]* 

-23.209  
[-0.61] 

-4.532   
 [-0.092] 

C 6924.23 16118.01 -5.35 -154.8 -3.83 46.95 547.171 
[ 1.93] 

 225.84 
 [ 1.078] 

Error Correction 
Terms 
(CointEq1, 
CointEq2, 
CointEq3) 

-0.524  
[-2.43] 

-0.002 
[-0.013] 

-147.7 [-
1.30] 

87.767 
 [ 1.55] 

-365.5  
[-1.84] 

66.990 
 [ 0.44] 

 
 

 

Note: * indicates significance at 1%,  
Source: Author’s Calculation, 2025 

 
The VECM results show that CCS and MCS exert significant negative long-run effects on GDP per 

capita in both countries, while other variables display insignificant impacts. Co-integration 
relationships are visualised in Figure 2a and Figure 2b.  

 
Fig. 2: (a, b) Co-integration Graph for Azerbaijan and Hungary 

Source: Developed by the Author using E-Views 

In the short term, ICT variables largely lack statistical significance, though MCS(-1) in Azerbaijan 
and CCS(-1) in Hungary have notable negative effects. The ECT indicates faster adjustment in 
Azerbaijan (-0.524, t = -2.43) compared to Hungary (-0.002, t = -0.013). IRF plots (Figures 3 and 4) 
reveal smoother long-run adjustment for Hungary, while Azerbaijan experiences greater volatility 
and sensitivity to external shocks.  
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Fig.3: Impulse Response Graph (For Hungary) 
Source: Developed by the Author using E-Views 
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Fig.4: Impulse Response Graph (For Azerbaijan) 
Source: Developed by the Author using E-Views 
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The VECM model explains 64.83 percent of the variation in GDP per capita for Azerbaijan and 58.41 
percent for Hungary, indicating a slightly better model fit in the case of Azerbaijan based on the R² value. 
Despite this, Hungary records a notably lower Sum of Squared Residuals (SSR), at 372.15 compared to 842.48 
for Azerbaijan, suggesting greater predictive accuracy. Furthermore, although Azerbaijan’s model yields a 
higher F-statistic, indicating marginally stronger overall model significance, the values remain below the 
commonly accepted threshold of 4–5 for robust statistical relevance (Table 8).  

Table 8 
Goodness-of-Fit 

Metrics/Countries (D(GDP_PER_CAP__USD_)) Azerbaijan  Hungary  

R-Squared  0.648348  0.584076 
Adj. R-Squared  0.384609  0.272133 
Sum sq. resids  8517343.  1661921. 
S.E. Equation  842.4836  372.1470 
F-Statistic  2.458293  1.872380 

Source: Author’s Calculation, 2025 

Moreover, diagnostic analysis results (Table 9) show no autocorrelation (LM test), normally distributed 
residuals (Jarque-Bera test), and constant variance (ARCH test), confirming model reliability.  

Table 9 
Diagnostic Analysis 

Metrics/countries Azerbaijan  Hungary  

LM Test  Prob.  0.6550/  0.8865 Prob.  0.2531/ 0.6253 
Jarque-Bera Test  Chi-sq  4.794292 16.8837 

p-value  0.9645 0.1540 
ARCH Test  Chi-sq  396.0000  396.0000 

p-value  0.2518  0.2518 

Source: Author’s Calculation, 2025 

4.5 Prediction via Machine Learning Models 
To improve predictive performance, the study also incorporated supervised machine learning techniques 

alongside conventional econometric approaches. In particular, ARIMA and XGBRegressor models were 
employed to generate forward-looking estimates. The five-year forecasts covering the period from 2024 to 
2028 for both Azerbaijan and Hungary are summarised in Table 10 and illustrated in Figure 5a and Figure 5b. 

Table 10 
Future Prediction using ARIMA and XGBRegressor 

Years /countries Azerbaijan Hungary 

 ARIMA XGBRegressor ARIMA XGBRegressor 
2024 6242.10 $7347.86 $16607.21 $14263.79 
2025 6359.16 $7392.60 $16914.42 $14024.86 
2026 6343.66 $7554.03 $17221.62 $14024.86 
2027 6345.71 $7749.35 $17528.81 $14024.86 
2028 6345.44 $7749.35 $17835.99 $14024.86 

 Source: Author’s Calculation, 2025 
 

The outcomes from both models offer notable insights. While XGBRegressor projects higher future 
values for Azerbaijan, ARIMA generates more comprehensive forecasts for GDP per capita, as depicted in 
Figure 5. Based on the evaluation metrics, specifically MAE and RMSE, ARIMA demonstrates superior 
predictive accuracy and reliability compared to XGBRegressor (Table 11). 
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Fig. 5 (a, b): 5 Years’ Future Prediction for Azerbaijan and Hungary 

Source: Developed by the Author using Python 

Table 11 
Performance Metrics 

 Azerbaijan Hungary 

 ARIMA XGBRegressor ARIMA XGBRegressor 
Mean Absolute Error (MAE) 695.43 1219.10 326.16 1159.02 
Root Mean Squared Error (RMSE) 937.19 14.24.39 429.15 1383.18 

Source: Author’s Calculation, 2025 

 
5. Discussion  

This study investigates the link between digitalisation and economic sustainability by drawing a 
comparative analysis of two developing nations, Azerbaijan and Hungary. Although both countries fall within 
the developing category, they exhibit considerable disparities in macroeconomic performance and ICT 
advancement. Hungary demonstrates a significantly higher GDP per capita, suggesting a more mature 
economic structure, whereas Azerbaijan’s income levels display greater volatility over time, indicative of 
heightened economic fluctuations (Table 2). Hungary’s ICT infrastructure is also considerably more advanced. 
The volume of ICT goods imports and service exports is substantially higher, underscoring Hungary’s more 
established role in international digital trade. Conversely, Azerbaijan’s lower ICT service export figures reflect 

a comparatively nascent digital services sector. These discrepancies can be attributed to differences in 
economic orientation, public policy priorities, investment capacity in digital systems, and human 
capital development. Hungary’s membership in the European Union has provided broader access to 
external funding and global markets, accelerating ICT development. In contrast, Azerbaijan remains 
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in an expansion phase, with national strategies geared towards modernising its digital landscape 
and improving connectivity.  

These divergences in ICT maturity inevitably affect GDP per capita, as a robust digital sector 
tends to enhance productivity, innovation, and international competitiveness [5; 26; 29; 81]. The 
impact of ICT services on GDP per capita has been widely explored across various economies, with 
mixed conclusions. Some studies report a positive and statistically significant relationship, while 
others suggest negative outcomes and advocate for improvements in digital infrastructure [6; 44; 
69; 88]. Mobile connectivity’s role in economic performance has also drawn scholarly interest, with 
the majority of studies confirming a positive impact [4; 53; 87]. However, our findings indicate that 
MCS exerts a negative influence on economic growth in both countries. Possible explanations 
include low-value usage, limited digital literacy, underutilised infrastructure, and inefficiencies 
within the telecommunications sector. In response, the next phase of this research will assess digital 
literacy levels in Azerbaijan and Hungary.  

The results also show that MHTMV has a negative but statistically insignificant effect on GDP per 
capita in both contexts. This may be attributed to underdeveloped high-tech manufacturing sectors 
and broader structural constraints [47; 63]. While previous research has linked CCS exports to 
economic advancement [44; 52], this study finds a negative effect in both nations. The result may 
stem from structural challenges, including a lack of service diversity, inadequate infrastructure, and 
weak integration into global digital value chains. Azerbaijan has made notable progress in ICT 
development due to strategic reforms and state-led initiatives. Policies such as the "Azerbaijan 
2030: National Priorities for Socio-Economic Development", the State Programme on the Expansion 
of Digitalisation and Innovation, and various projects spearheaded by the Ministry of Digital 
Development and Transport have fostered this growth. Key reforms include the E-Government 
platform aimed at enhancing digital public service delivery, the National Broadband Internet Project 
to improve internet access, and efforts to support ICT entrepreneurship and foreign direct 
investment in technology. Collectively, these initiatives have significantly strengthened Azerbaijan’s 
digital economy and supported innovation-led growth [70].  

6. Conclusion 
This study assessed the influence of digitalisation on sustainable economic development in 

Azerbaijan and Hungary by integrating traditional econometric analysis (VECM) with supervised 
machine learning techniques (ARIMA and XGBRegressor) to ensure both interpretive robustness 
and predictive accuracy. The short-term estimations revealed mixed and statistically insignificant 
effects. In Azerbaijan, a 1% reduction in ICT_GI as a share of total imports corresponded with a 
$130.62 rise in GDP per capita, whereas a 1% increase in ICT_SE resulted in a $148.70 decline. An 
alternative estimation suggested that a similar increase in ICT_SE could raise GDP per capita by 
$23.715. Furthermore, a 1% growth in CCS was associated with GDP per capita declines of $23.209 
in Azerbaijan and $4.532 in Hungary. Despite these observed fluctuations, none of the short-run 
impacts achieved statistical significance, indicating that digitalisation may not yield immediate 
economic returns and that its benefits could take time to materialise. In contrast, the long-term 
findings presented stronger and more conclusive results. An increase of 1% in CCS led to reductions 
in GDP per capita by $173.68 in Azerbaijan and $516.28 in Hungary. Additionally, each additional 
mobile subscription per 100 individuals resulted in a $77.77 decline in GDP per capita in Azerbaijan. 
Similarly, a 1% increase in MHTMV reduced GDP per capita by $56.79 over the long term, indicating 
structural inefficiencies or underutilised digital capacities. To complement these insights and 
improve forecast accuracy, both ARIMA and XGBRegressor were employed. ARIMA demonstrated 
superior performance in terms of predictive reliability. The forecasts suggest a positive economic 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 185-208 

202 

 
 

 

trajectory for Hungary, while Azerbaijan is likely to face economic contraction over the forthcoming 
five-year period. These results align with the broader econometric evidence, which illustrates 
greater volatility and instability in Azerbaijan’s economic indicators compared to Hungary.  

 

Recommendation 
Drawing from the results of this study, the following policy recommendations are proposed to 

strengthen the economic contribution of digitalisation in Azerbaijan and Hungary:  

For Azerbaijan 
i. Enhance the global competitiveness of ICT service exports by fostering innovation ecosystems, 

introducing targeted fiscal incentives, and attracting international capital.  
ii. Strengthen e-governance systems to address inefficiencies and expand the accessibility and 

quality of digital public services.  
iii. Increase strategic investments in ICT infrastructure, particularly in sectors associated with 

high-value-added services and technological innovation, to generate long-term economic gains.  

For Hungary  
Utilise the advantages of European Union digital policy frameworks to accelerate Industry 4.0 

implementation. Emphasis should be placed on encouraging smart technology integration in 
manufacturing and services, improving regional ICT trade flows, and expanding international digital 
cooperation to maintain economic momentum.  

For Both Countries 
Develop and implement comprehensive national digital strategies that prioritise sustained 

investment in digital transformation. This should be accompanied by initiatives aimed at improving 
digital literacy and establishing transparent regulatory frameworks to ensure that digitalisation 
translates into meaningful economic growth.  

Future research will explore the measurement of digital literacy and assess its influence on the 
digital economy in both national contexts. The successful implementation of these strategic 
measures could enable Azerbaijan and Hungary to strengthen the economic returns of 
digitalisation, foster inclusive and sustainable development, and build resilience against future 
economic disruptions.  
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