A Decision Framework for Course Recommendation Using Basic Uncertain Linguistic Information Soft Sets

Authors

  • Peitao Qin School of Marxism, Anhui University, Hefei Anhui, 230601 China
  • Zhifu Tao School of Big Data and Statistics, Anhui University, Hefei Anhui, 230601 China
  • Dragan Pamucar Széchenyi István University, Győr, Hungary

DOI:

https://doi.org/10.31181/dmame8220251494

Keywords:

Basic uncertain linguistic information soft set; multi-criteria group decision making; accessibility; set operations; curriculum recommendation.

Abstract

The aim of this paper is to provide fundamental theoretical studies on basic uncertain linguistic information soft set (BULISS). Firstly, the combination of basic uncertain linguistic information and soft set is introduced. Next, set operations and similarity measure on basic uncertain linguistic information soft sets and their properties are discussed. A novel application of basic uncertain linguistic information soft set to multi-criteria group decision making is put forward, in which the similarity measure between any two BULISSs is developed. A group decision algorithm by utilizing traditional decision procedure of soft set theory (or fuzzy soft set theory) and optimization method is given. Finally, a case study relating to curriculum recommendation is shown to illustrate feasibility and validity of the developed group decision making approach.

Downloads

Download data is not yet available.

References

[1] Abdalla, M. E. M., Uzair, A., Ishtiaq, A., Tahir, M., & Kamran, M. (2025). Algebraic structures and practical implications of interval-valued Fermatean neutrosophic super HyperSoft sets in healthcare. Spectrum of Operational Research, 2(1), 199-218. https://doi.org/10.31181/sor21202523

[2] Ali, A., Ullah, K., & Hussain, A. (2023). An approach to multi-attribute decision-making based on intuitionistic fuzzy soft information and Aczel-Alsina operational laws. Journal of decision analytics and intelligent computing, 3(1), 80-89. https://doi.org/10.31181/jdaic10006062023a

[3] Ali, S., Naveed, H., Siddique, I., & Zulqarnain, R. M. (2024). Extension of interaction geometric aggregation operator for material selection using interval-valued intuitionistic fuzzy hypersoft set. Journal of Operations Intelligence, 2(1), 14-35. https://doi.org/10.31181/jopi21202410

[4] Arora, R., & Garg, H. (2018). A robust correlation coefficient measure of dual hesitant fuzzy soft sets and their application in decision making. Engineering Applications of Artificial Intelligence, 72, 80-92. https://doi.org/10.1016/j.engappai.2018.03.019

[5] Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets: theory and applications (pp. 1-137). Springer. https://doi.org/10.1007/978-3-7908-1870-3_1

[6] Atanassov, K. T. (2019). On interval valued intuitionistic fuzzy sets. In Interval-Valued Intuitionistic Fuzzy Sets (pp. 9-25). Springer. https://doi.org/10.1007/978-3-030-32090-4_2

[7] Chen, Z.-S., Martinez, L., Chang, J.-P., Wang, X.-J., Xionge, S.-H., & Chin, K.-S. (2019). Sustainable building material selection: A QFD-and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Engineering Applications of Artificial Intelligence, 85, 783-807. https://doi.org/10.1016/j.engappai.2019.08.006

[8] Cornelis, C., Deschrijver, G., & Kerre, E. E. (2006). Advances and challenges in interval-valued fuzzy logic. Fuzzy sets and systems, 157(5), 622-627. https://doi.org/10.1016/j.fss.2005.10.007

[9] Das, A. K., Gupta, N., Mahmood, T., Tripathy, B. C., Das, R., & Das, S. (2024). Assessing anthropogenic influences on the water quality of Gomati River using an innovative weighted fuzzy soft set based water pollution rating system. Discover Water, 4(1), 73. https://doi.org/10.1007/s43832-024-00136-3

[10] Das, S., Malakar, D., Kar, S., & Pal, T. (2019). Correlation measure of hesitant fuzzy soft sets and their application in decision making. Neural Computing and Applications, 31(4), 1023-1039. https://doi.org/10.1007/s00521-017-3135-0

[11] Doumpos, M., Figueira, J. R., Greco, S., & Zopounidis, C. (2019). New perspectives in multiple criteria decision making. Springer. https://doi.org/10.1007/978-3-030-11482-4

[12] Geramian, A., Abraham, A., & Ahmadi Nozari, M. (2019). Fuzzy logic-based FMEA robust design: a quantitative approach for robustness against groupthink in group/team decision-making. International Journal of Production Research, 57(5), 1331-1344. https://doi.org/10.1080/00207543.2018.1471236

[13] Herawan, T., & Deris, M. M. (2011). A soft set approach for association rules mining. Knowledge-Based Systems, 24(1), 186-195. https://doi.org/10.1016/j.knosys.2010.08.005

[14] Jin, L.-S., Xu, Y.-Q., Chen, Z.-S., Mesiar, R., & Yager, R. R. (2022). Relative basic uncertain information in preference and uncertain involved information fusion. International Journal of Computational Intelligence Systems, 15(1), 12. https://doi.org/10.1007/s44196-022-00066-9

[15] Maji, P. K., Biswas, P. K., & Roy, A. (2001). Fuzzy soft sets. https://sid.ir/paper/633097/en

[16] Larson, H. J. (1982). Introduction to probability theory and statistical inference (3rd ed.). Wiley. https://cir.nii.ac.jp/crid/1970586434928544792

[17] Mahmood, T., Asif, M., ur Rehman, U., & Ahmmad, J. (2024). T-bipolar soft semigroups and related results. Spectrum of Mechanical Engineering and Operational Research, 1(1), 258-271. https://doi.org/10.31181/smeor11202421

[18] Jiang, Y., Tang, Y., Chen, Q. (2011) An adjustable approach to intuitionistic fuzzy soft sets based decision making. Applied Mathematical Modelling, 35(2): 824-836. https://doi.org/10. 1016/j.apm.2010.07.038

[19] Mesiar, R., Borkotokey, S., Jin, L., & Kalina, M. (2017). Aggregation under uncertainty. IEEE Transactions on fuzzy systems, 26(4), 2475-2478. https://doi.org/10.1109/TFUZZ.2017. 2756828

[20] Molodtsov, D. (1999). Soft set theory—first results. Computers & Mathematics with Applications, 37(4-5), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5

[21] Muthukumar, P., & Krishnan, G. S. S. (2016). A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Applied Soft Computing, 41, 148-156. https://doi.org/10.1016/j.asoc.2015.12.002

[22] Naveed, H., & Ali, S. (2025). Addressing decision-making challenges: similarity measures for interval-valued intuitionistic fuzzy hypersoft sets. Decision Making Advances, 3(1), 175-184. https://doi.org/10.31181/dma31202566

[23] Roy, A. R., & Maji, P. (2007). A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2), 412-418. https://doi.org/10.1016/j.cam.2006.04.008

[24] Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process (Vol. 282). Springer. https://doi.org/10.1007/978-1-4614-7279-7

[25] Şahin, R., & Küçük, A. (2014). On similarity and entropy of neutrosophic soft sets. Journal of intelligent & fuzzy systems, 27(5), 2417-2430. https://doi.org/10.3233/IFS-141211

[26] Saqlain, M., & Saeed, M. (2024). From ambiguity to clarity: unraveling the power of similarity measures in multi-polar interval-valued intuitionistic fuzzy soft sets. Decision Making Advances, 2(1), 48-59. https://doi.org/10.31181/dma21202421

[27] Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539. https://doi.org/10.1002/int.20418

[28] Vijayabalaji, S., & Ramesh, A. (2019). Belief interval-valued soft set. Expert Systems with Applications, 119, 262-271. https://doi.org/10.1016/j.eswa.2018.10.054

[29] Wan, S., & Dong, J. (2020). Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees. In Decision Making Theories and Methods Based on Interval-Valued Intuitionistic Fuzzy Sets (pp. 71-114). Springer. https://doi.org/10.1007/978-981-15-1521-7_3

[30] Wang, L. (1997). A Course in Fuzzy Systems and ControlPrentice-HallEnglewood Cliffs. In: NJ. https://www.scirp.org/reference/referencespapers?referenceid=1763153

[31] Xiao, Z., Chen, W., & Li, L. (2012). An integrated FCM and fuzzy soft set for supplier selection problem based on risk evaluation. Applied Mathematical Modelling, 36(4), 1444-1454. https://doi.org/10.1016/j.apm.2011.09.038

[32] Yang, X., Lin, T. Y., Yang, J., Li, Y., & Yu, D. (2009). Combination of interval-valued fuzzy set and soft set. Computers & Mathematics with Applications, 58(3), 521-527. https://doi.org/10.1016/j.camwa.2009.04.019

[33] Yang, Y., Jie, M.-Q., & Chen, Z.-S. (2024). Dynamic three-way multi-criteria decision making with basic uncertain linguistic information: A case study in product ranking. Applied Soft Computing, 152, 111228. https://doi.org/10.1016/j.asoc.2024.111228

[34] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

[35] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information sciences, 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90017-1

[36] Zhang, Z., & Zhang, S. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Applied Mathematical Modelling, 37(7), 4948-4971. https://doi.org/10.1016/j.apm.2012.10.006

[37] Zhao, H., & Zhang, F. (2025). A Tree Soft Set Framework for Evaluating Teaching Quality in University Physics Programs: Enhancing Precision and Decision-Making. Neutrosophic Sets and Systems, 80(1), 5. https://digitalrepository.unm.edu/nss_journal/vol80/iss1/5

[38] Zou, Y., & Xiao, Z. (2008). Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems, 21(8), 941-945. https://doi.org/10.1016/j.knosys.2008.04.004

[39] Xiao, Z., Gong, K., & Zou, Y. (2009). A combined forecasting approach based on fuzzy soft sets. Journal of Computational & Applied Mathematics, 228(1): 326-333. https://doi.org/10.1016/ j.cam.2008.09.033.

[40] Herrera, F., Martinez, L. (2000). A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 8(6):746-752. https://doi.org/10.1109 /91.890332.

Downloads

Published

2025-08-10

How to Cite

Peitao Qin, Zhifu Tao, & Dragan Pamucar. (2025). A Decision Framework for Course Recommendation Using Basic Uncertain Linguistic Information Soft Sets. Decision Making: Applications in Management and Engineering, 8(2), 165–184. https://doi.org/10.31181/dmame8220251494